AI and Smart Customer Services: Revolutionizing the Customer Experience

Authors

  • Pongthep Phudech College of Logistics and Supply Chain, Suan Sunandha Rajabhat University

Keywords:

Artificial Intelligence; Chatbots; Customer Service; Personalization; Predictive Analytics

Abstract

The advent of artificial intelligence (AI) has significantly transformed customer service, enhancing efficiency, personalization, and customer satisfaction. This paper explores AI integration in customer service through technologies like chatbots, virtual assistants, predictive analytics, and sentiment analysis. These tools automate tasks, provide instant responses, and deliver tailored experiences, significantly boosting customer satisfaction and loyalty. However, challenges such as data privacy, job displacement, and AI biases pose significant concerns. Ensuring robust data protection, addressing potential job losses, and developing fair algorithms are crucial to overcoming these obstacles. This study provides a comprehensive overview of AI-driven smart customer services, highlighting the balance between leveraging AI for improved customer experiences and navigating associated ethical dilemmas. Future advancements in AI and natural language processing promise even more sophisticated and intuitive solutions, paving the way for a future where AI seamlessly integrates with human interactions to provide superior service.

References

Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509-514. https://doi.org/10.1126/science.aaa1465

Adamopoulou, E., Moussiades, L. (2020). An overview of chatbot technology. In Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds) Artificial intelligence applications and innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, vol 584. Springer, Cham. https://doi.org/10.1007/978-3-030-49186-4_31

Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. Retrieved May 19, 2024 from https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Atzori, L., Iera, A., & Morabito, G. (2017). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. https://doi.org/10.1016/j.comnet.2010.05.010

Barocas, S., Hardt, M., & Narayanan, A. (2023). Fairness and machine learning: Limitations and opportunities. MIT Press.

Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. In Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency (pp. 149-159). https://doi.org/10.1145/3287560.3287598

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fairness, Accountability and Transparency (pp. 77-91). https://doi.org/10.1145/3287560.3287596

Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186. https://doi.org/10.1126/science.aal4230

Cavoukian, A. (2016). The 7 foundational principles of privacy by design. Information and Privacy Commissioner of Ontario, Canada. Retrieved May 19, 2024 from https://www.ipc.on.ca/wp-content/uploads/resources/7foundationalprinciples.pdf

Chen, Y., Chiang, R. H., & Storey, V. C. (2019). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4). https://doi.org/10.2307/41703503

Davenport, T., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL-HLT. https://doi.org/10.18653/v1/N19-1423

Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Information Systems (TOIS), 14(3), 330-347. https://doi.org/10.1145/230538.230561

Golla, B., & Kahn, J. (2019). Protecting privacy in a digital age: Report of the expert panel on privacy. Council of Canadian Academies. Retrieved May 19, 2024 from https://cca-reports.ca/reports/protecting-privacy-in-a-digital-age/

Gomez-Uribe, C. A., & Hunt, N. (2016). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4), 1-19. https://doi.org/10.1145/2843948

Goodman, B., & Flaxman, S. (2017). European Union regulations on algorithmic decision-making and a "right to explanation". AI Magazine, 38(3), 50-57. https://doi.org/10.1609/aimag.v38i3.2741

Gretzel, U., Fesenmaier, D. R., Formica, S., & O'Leary, J. T. (2015). Searching for the future: Challenges faced by destination marketing organizations. Journal of Travel Research, 45(2), 116-126. https://doi.org/10.1177/0047287506291598

He, W., Zha, S., & Li, L. (2018). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464-472. https://doi.org/10.1016/j.ijinfomgt.2013.01.001

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., & Wallach, H. (2019). Improving fairness in machine learning systems: What do industry practitioners need? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-16). https://doi.org/10.1145/3290605.3300830

Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: An introduction to voice assistants. Medical Reference Services Quarterly, 37(1), 81-88. https://doi.org/10.1080/02763869.2018.1404391

Hoy, M. B. (2018). Alexa, Siri, Cortana, and More: An introduction to voice assistants. Medical Reference Services Quarterly, 37(1), 81-88. https://doi.org/10.1080/02763869.2018.1404391

Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172. https://doi.org/10.1177/10946705177524

Junqué de Fortuny, E., Martens, D., & Provost, F. (2013). Predictive modeling with big data: is bigger really better? Big Data, 1(4), 215-226. https://doi.org/10.1089/big.2013.003

Kharde, V., & Sonawane, S. (2016). Sentiment analysis of twitter data: A survey of techniques. International Journal of Computer Applications, 139(11), 5-15. https://doi.org/10.48550/arXiv.1601.06971

Kietzmann, J., Paschen, J., & Treen, E. R. (2018). Artificial intelligence in advertising. Journal of Advertising Research, 58(3), 263-267. https://doi.org/10.2501/JAR-2018-035

Li, S., Xu, L. D., & Zhao, S. (2018). The Internet of Things: A survey. Information Systems Frontiers, 17(2), 243-259. https://doi.org/10.1007/s10796-014-9492-7

Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press. https://doi.org/10.1017/CBO9781139084789

Liu, B., Wang, Y., & Liu, W. (2019). Towards explainable AI: A survey on interpreting the outputs of AI models. arXiv preprint arXiv:1907.13545. https://doi.org/10.48550/arXiv.1907.13545

Madras, D., Creager, E., Pitassi, T., & Zemel, R. (2018). Learning adversarially fair and transferable representations. In Proceedings of the 35th International Conference on Machine Learning (pp. 3381-3390). https://doi.org/10.48550/arXiv.1802.06309

Manyika, J., et al. (2017). Jobs lost, jobs gained: Workforce transitions in a time of automation. McKinsey Global Institute.

Manyika, J., Lund, S., Chui, M., Bughin, J., Woetzel, J., Batra, P., ... & Sanghvi, S. (2017). Jobs lost, jobs gained: Workforce transitions in a time of automation. McKinsey Global Institute, 150(1), 1-148.

Manyika, J., Lund, S., Chui, M., Bughin, J., Woetzel, J., Batra, P., ... & Sanghvi, S. (2017). Jobs lost, jobs gained: Workforce transitions in a time of automation. McKinsey Global Institute, 150(1), 1-148.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35. https://doi.org/10.1145/3457607

Paschen, J., Kietzmann, J., & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410-1419. https://doi.org/10.1108/JBIM-10-2018-0295

Picard, R. W. (2017). Affective computing. MIT Press.

Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are transforming companies. Harvard Business Review, 93(10), 96-114.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144). https://doi.org/10.1145/2939672.2939778

Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human-Computer Studies, 146, 102551. https://doi.org/10.1016/j.ijhcs.2020.102551

Smith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon.com. IEEE Internet Computing, 21(3), 12-18. https://doi.org/10.1109/MIC.2017.72

Solove, D. J. (2021). The myth of the privacy paradox. The George Washington Law Review, 89, 1.

Susskind, R. (2019). Online courts and the future of justice. Oxford University Press.

Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13. https://doi.org/10.1016/j.techfore.2015.12.019

West, D. M. (2018). The future of work: Robots, AI, and automation. Brookings Institution Press.

Wirtz, J., & Zeithaml, V. (2018). Artificial intelligence in service: Skepticism, satisfaction, and trust. Journal of Service Management, 29(1), 4-11. https://doi.org/10.1108/JOSM-04-2017-0094

Wirtz, J., & Zeithaml, V. (2018). Cost-effective service excellence. Journal of the Academy of Marketing Science, 46, 59-80. https://doi.org/10.1007/s11747-017-0560-7

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Dean, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. https://doi.org/10.48550/arXiv.1609.08144

Zhou, J., Li, L., Dong, L., Liu, Q., & Wei, F. (2020). Unified pre-training for natural language understanding and generation. arXiv preprint arXiv:2002.12804. https://doi.org/10.48550/arXiv.2002.12804

Downloads

Published

2024-06-20