The Transforming Public Administration: The Role of AI in Shaping the Future

Authors

  • Passanan Phuangthuean Faculty of Political Science and Law, Burapha University, Chon Buri, Thailand
  • Janewit Nuansang Faculty of Political Science and Law, Burapha University, Chon Buri, Thailand

Keywords:

Artificial intelligence; Public administration; Public safety; Public services; Public trust

Abstract

AI can significantly enhance public administration by improving efficiency, decision-making, and government-citizen interactions. Literature and case studies highlight that AI streamlines public service delivery, provides data-driven insights for better decisions, and fosters transparency and accountability. However, challenges such as employment displacement, privacy concerns, ethical considerations, and digital inequality must be addressed. To leverage AI's benefits while mitigating risks, public agencies should prioritize transparency, justice, and citizen rights, promote AI education, protect privacy, reduce the digital divide, and enhance public participation. Continuous research on AI's impact on public services, employment, ethics, and regulation is essential for efficient and democratic administration.

References

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012

Bertot, J. C., Jaeger, P. T., & Grimes, J. M. (2010). Using ICTs to create a culture of transparency: E-government and social media as openness and anti-corruption tools for societies. Government Information Quarterly, 27(3), 264-271. https://doi.org/10.1016/j.giq.2010.03.001

Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.

Büchi, M., Just, N., & Latzer, M. (2016). Modeling the second-level digital divide: A five-country study of social differences in Internet use. New Media & Society, 18(11), 2703-2722. https://doi.org/10.1177/1461444815604154

Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial intelligence and the ‘good society’: the US, EU, and UK approach. Science and Engineering Ethics, 24(2), 505-528. https://doi.org/10.1007/s11948-017-9901-7

Chui, M., Harrysson, M., Manyika, J., Roberts, R., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Applications and value of deep learning. McKinsey Global Institute.

Chui, M., Manyika, J., & Miremadi, M. (2016). Where machines could replace humans—and where they can’t (yet). McKinsey.

City of San Francisco. (2019). Twitter sentiment analysis. Retrieved May 20, 2024 from https://datasf.org/

Culhane, D., Treglia, D., Steif, K., Kuhn, R., & Byrne, T. (2019). Public service reductions associated with placement of homeless persons with severe mental illness in supportive housing. Housing Policy Debate, 29(1), 109-119. https://doi.org/10.1080/10511482.2018.1469529

Davenport, T.H., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. https://doi.org/10.7861/futurehosp.6-2-94

Desouza, K. C., & Jacob, B. (2017). Big Data in the public sector: Lessons for practitioners and scholars. Administration & Society, 49(7), 1043–1064. https://doi.org/10.1177/0095399714555751

Desouza, K. C., Dawson, G. S., & Chenok, D. (2020). Designing, developing, and deploying artificial intelligence systems: Lessons from and for the public sector. Business Horizons, 63(2), 205-213. https://doi.org/10.1016/j.bushor.2019.11.004

Dignum, V. (2018). Ethics in artificial intelligence: Introduction to the special issue. Ethics and Information Technology, 20(1), 1-3. https://doi.org/10.1007/s10676-018-9450-z

European Commission. (2021). Digital Education Action Plan (2021-2027). Retrieved May 20, 2024 from https://ec.europa.eu/education/education-in-the-eu/digital-education-action-plan_en

Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96-104. https://doi.org/10.1145/2818717

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28, 689–707. https://doi.org/10.1007/s11023-018-9482-5

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Hilbert, M. (2016). The bad news is that the digital access divide is here to stay: Domestically installed bandwidths among 172 countries for 1986–2014. Telecommunications Policy, 40(6), 567-581. https://doi.org/10.1016/j.telpol.2016.01.006

Hunt, P., Saunders, J., & Hollywood, J.S. (2019). Evaluation of the Shreveport predictive policing experiment. RAND Corporation. Retrieved May 19, 2024 from https://www.rand.org/pubs/research_reports/RR324.html

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), e000101. https://doi.org/10.1136/svn-2017-000101

Liu, B., Chen, H., & He, W. (2020). Applications of artificial intelligence in public administration: A literature review. Public Administration Review, 80(5), 789-800. https://doi.org/10.1016/j.trpro.2017.05.083

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A Survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 115. https://doi.org/10.1145/3457607

Meier, P. (2015). Digital humanitarians: How big data is changing the face of humanitarian response. CRC Press.

Mergel, I., Edelmann, N., & Haug, N. (2019). Defining digital transformation: Results from expert interviews. Government Information Quarterly, 36(4), 101385. https://doi.org/10.1016/j.giq.2019.06.002

Mergel, I., Rethemeyer, R. K., & Isett, K. (2016). Big data in public affairs. Public Administration Review, 76(6), 928-937. https://doi.org/10.1111/puar.12625

Pham, Q., Nguyen, D.C., Huynh-The, T., Hwang, W., Pathirana, P.N. (2020). Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: A Review on the State-of-the-Art. Diagnosis, 10(7), 797-812. https://doi.org/10.1109/ACCESS.2020.3009328

Ragnedda, M., & Ruiu, M. L. (2020). Digital Capital: A Bourdieusian perspective on the digital divide. Emerald Publishing Limited.

Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, 'Sandy', Roberts, M. E., Shariff, A., Tenenbaum, J. B., & Wellman, M. (2019). Machine behaviour. Nature, 568, 477–486. https://doi.org/10.1038/s41586-019-1138-y

Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A., Maharaj, T., Sherwin, E.D., Mukkavilli, S.K., Kording, K.P., Gomes, C., Ng, A.Y., Hassabis, D., Platt, J.C., Creutzig, F., Chayes, J., Bengio, Y. (2019). Tackling climate change with machine learning. ACM Computing Surveys, 55(2), 1–96. https://doi.org/10.1145/3485128

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited.

Tang, A. (2019). Digital democracy is within reach. New York Times. Retrieved May 18, 2024 from https://www.nytimes.com/

Vaithianathan, R., Maloney, T., Putnam-Hornstein, E., & Jiang, N. (2018). Children at risk of maltreatment: Prediction models. Children and Youth Services Review, 81, 291-298. https://doi.org/10.1016/j.childyouth.2017.08.021

van Dijk, J. A. G. M. (2020). The digital divide. Polity Press.

Wirtz, B. W., & Birkmeyer, S. (2020). Artificial intelligence and the public sector—applications and challenges. International Journal of Public Administration, 43(7), 596–615. https://doi.org/10.1080/01900692.2019.1588308

World Economic Forum. (2020). The future of jobs report 2020. Retrieved May 18, 2024 from http://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf

Yeung, K. (2018). Regulation by blockchain: the emerging battle for supremacy between the code of law and code as law. Modern Law Review, 82(2), 207–239. https://doi.org/10.1111/1468-2230.12399

Young, M. M., Bullock, J. B., & Lecy, J. D. (2019). Artificial discretion as a tool of governance: a framework for understanding the impact of artificial intelligence on public administration. Perspectives on Public Management and Governance, 2(4), 301-313. https://doi.org/10.1093/ppmgov/gvz014

Zhang, B., & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. Retrieved May 18, 2024 from http://dx.doi.org/10.2139/ssrn.3312874

Zhang, H., Penninger, J.M., Li, Y., Zhong, N., & Slutsky, A.S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46, 586–590. https://doi.org/10.1007/s00134-020-05985-9

Zheng, Y., & Walsham, G. (2020). Inequality of what? An intersectional approach to digital inequality under Covid-19. Information and Organization, 30(1), 100301. https://doi.org/10.1016/j.infoandorg.2020.100301

Downloads

Published

2024-06-20