臺灣之視譯研究: 以眼動指標為證

Pratuangporn Wiratpokee¹

提要

視譯 (sight translation) 指口譯員在閱讀文本的同時,以口語表達方式將文本由原語翻譯成目的語 (賴則中,2010:1)。視譯被視為一種口譯類型,其主要運用在法庭審理以及學術會議上,也用作同步口譯訓練的暖身練習 (Agrifoglio,2004:43)。

相對於其他口譯活動,視譯所需要的認知氣力相對簡單,並 且由於其原語輸入為書面,可藉由眼動追蹤技術來探討口譯員在 進行視譯時的認知過程,從而進一步揭開口譯員腦中神秘的"黑 匣子"。

本文旨在回顧臺灣將眼動追蹤技術應用於視譯研究之文獻。 選定黃致潔(2011)的《視譯閱讀理解歷程之眼動研究》以及陳 德怡(2013)的《熟手與生手口譯員視譯理解過程差異之眼動研 究》兩篇緊密相關之論文作為闡述對象。將著眼點放在研究目 的、研究方法、所使用的統計方法,以及其對口筆譯研究領域所 帶來的貢獻。

關鍵詞: 視譯、眼動追蹤、量性研究、文獻回顧

วารสารจีนวิทยา ♦ ปีที่ 7 สิงหาคม 2556

¹鄭佩佩,泰國皇太后大學文學院中文系講師。

前言

所謂視譯 (sight translation) 是指口譯員在閱讀文本的同時, 以口語表達方式將文本由原語翻譯成目的語 (賴則中, 2010:1)。視譯是一種口譯,但與其他口譯類型,如逐步口譯、 同步口譯的不同在於視譯的原語輸入為書面,而非口頭 (Su, 2013: 7)。視譯主要運用在法庭審理以及學術會議上,此外也 用作同步口譯訓練的暖身練習 (Agrifoglio, 2004: 43)。

相對於同步口譯和逐步口譯來說,視譯仍然受到較少的關注。該活動產生時所需要的認知氣力也仍存在爭議。根據 Gile 所提出的口譯氣力模式當中,視譯的氣力模式為閱讀分析氣力加上產出氣力 (ST = R+P) (Gile, 1997: 179-180)。然而 Agrifoglio (2004: 61) 則認為,除了上述兩種氣力之外,視譯也需要用到短期記憶。

在進行視譯時,口譯員手上已拿到需要翻譯的文字,故不少人認為視譯比其他口譯類型簡單。然而研究指出,視覺訊息對人的認知而言,會比聽覺訊息帶來更大的負擔。因此要做到視譯產出質量達到可接受的水準並不比其他口譯形式簡單。超過兩秒鐘的停頓視同偏誤(楊承淑,2000:67)。此外,口譯員在閱讀文字時容易受字詞牽制,造成原語干擾 (Agrifoglio, 2004:46)。可見要做好視譯誠非易事。

在台灣,以視譯為中心的研究有十項,均為碩士論文,其中 五項為國立師範大學翻譯研究所的碩士論文;四項為國立彰化師 範大學翻譯研究所的碩士論文;一項為輔仁大學翻譯研究所。最

早的一篇於 2001 年完成, 最近的 2013 年則有三篇以視譯為主題 的碩士論文。研究內容方面,早期的視譯研究集中在以語言學的 方法分析翻譯偏誤,以期對視譯教學提出參考,比如 2004 年國 立師範大學翻譯研究所研究生侯慧如的碩士論文《漢英視譯主要 動詞之選取及非主要動詞之轉換》: 有些探討原文難易度對於視 譯所造成的困難,如 2009 年國立彰化師範大學翻譯研究所研究 生劉倩如的碩士論文《字彙密度及視譯訓練隊視譯之影響》。到 了近幾年,視譯研究逐漸轉向自然科學,比如神經科學。2011 年, 師大翻譯所研究生黃致潔在其碩士論文《視譯閱讀理解歷程 之眼動研究》中,採用眼動追蹤技術對視譯的理解 (comprehension) 階段進行了實驗性研究,以便揭示出視譯究竟是 如何形成。該研究可謂是視譯研究邁向科學化的第一步, 特別值 得探討。

近幾年來, 眼動追蹤技術普遍應用在認知處理研究中, 特別 是在閱讀理解上(Su, 2013:28)。眼動不僅是眼球的移動,在心理 學研究上, 眼動軌跡可反映人的認知處理歷程, 眼動軌跡因此是 探討語言處理表現極其合適的工具(高佩如, 2011:4)。而在口 譯研究領域,由於主要的兩種口譯行為——逐步口譯及同步口譯 的輸入和產出均為口語, 眼動追蹤法於是僅能應用在以書面為輸 入訊息的視譯研究當中。然而,目前該技術在口筆譯研究領域的 使用仍然處在起步階段 (Huang, 2011:27)。

在台灣,使用眼動追蹤法的視譯研究共有三項。最早一篇為 上述的黃致潔碩士論文《視譯閱讀理解歷程之眼動研究》。另外 兩篇則在 2013 年完成,分別是陳德怡的《熟手與生手口譯員視譯理解過程差異之眼動研究》以及蘇雅薇的《口譯產出停頓時的認知歷程:以視譯眼動軌跡為證》。值得一提的是,三篇論文存在不少相關性。首先三篇論文均為國立師範大學翻譯研究所的碩論,指導老師均為陳子瑋博士。² 此外,後兩篇均以黃致潔的研究所獲得的眼動指標和產出錄音,當做進一步延伸研究的依據。但由於本文篇幅有限,且蘇雅薇的研究較之於陳德怡的研究,其與黃致潔的初始研究相關性不大,所採用的研究方法與推論統計並沒有直接關係,故不在此作詳細介紹。

本文旨在對黃致潔和陳德怡的視譯研究進行闡述,將著眼點 放在研究目的、研究方法、所使用的統計方法,以及其對口筆譯 研究領域所帶來的貢獻。

黄致潔的《視譯閱讀理解歷程之眼動研究》

在論文的前言中,黃致潔指出,口譯歷程包含理解(comprehension)、重組(reformulation)以及產出 (production)三個階段。而探討這三個階段如何及何時發生的研究卻比較為少見。考慮到默讀 (silent reading)、朗讀 (reading aloud)和視譯之間的重疊性。即默讀包含理解階段、朗讀包含理解和重組階段、而視譯則包含了所有階段。研究者認為,若讓口譯員進行默讀、朗讀及視譯的測驗,並將三種活動所產生的眼動指標加以對比與分析,應能更進一步了解視譯的產生過程。

² 其中黃致潔的碩論邀請了專門研究眼動的國立政治大學蔡介立教授作為論文另一位導師。

	Silent Reading	Reading Aloud	Sight Translation
Comprehension	V	V	V
Reformulation			V
Production		V	V

表 1: 口譯三階段與三種被測驗活動之關係 (摘自 Huang, 2011: 38)

《視譯閱讀理解歷程之眼動研究》具體研究目的包括:

- 1 探討理解階段如何及何時在視譯活動中產生:
- 檢驗理解和產出階段在視譯活動中是否重疊, 以便能夠 推論視譯究竟是序列式 (vertical perspective) 還是平行式 (horizontal perspective) .
- 調查提前閱讀 (reading ahead)是否真正存在。若發現理解 3. 階段和產出階段存在重疊,並意味著提前閱讀確實存 在。

上述第二項研究目的所提到的序列式翻譯 (vertical perspective) 和平行式翻譯 (horizontal perspective) 是翻譯界仍然存 在爭論的口譯概念。

序列式翻譯又稱意義導向策略 (meaning-based strategy),支持此想法的學者認為,口譯員在進行口譯時會保留理解階段獲得的訊息組塊 (information chunk),然後再進行重組並用目的語產出 (Fabbro & Gran, 1994: 297)。換句話說,口譯員是先理解訊息,再用目的語表達出來。

平行式翻譯又稱字彙導向策略 (word-based strategy)。此想法認為口譯是直接將語言碼 (linguistic code) 進行重編碼的語言活動,口譯員在閱讀理解的同時,尋找與原文對應的最小意義單元。換句話說,在沒有完成理解階段之時,口譯員頭腦中已開始進行重組。

研究方法方面,黃致潔這項研究使用眼動追蹤技術來記錄翻 譯研究生在默讀、朗讀以及視譯三種活動時的眼動指標。所記錄 的眼動指標分為三組,包括:

- 1. 首次凝視時間 (First fixation duration, FFD)、單次凝視時間 (Single fixation duration, SFD) 以及整體凝視時間 (Gaze duration, GD)。
- 2. 右邊邊界整體凝視時間 (Go-past time, GPT) 和往前回視 比例 (Regression-out rate, ROR)
- 3. 總凝視時間 (Total viewing time, TVT)、再閱讀時間 (Rereading time, RRT) 和再閱讀比例 (Rereading rate)

其中第一組指標透露的是每個區域的初始階段,從而反映出 閱讀理解過程中的字詞辨識 (word recognition);第二組顯示語義 不清狀況的意識,代表閱讀者試圖理解當時正在閱讀的文字;第 三組反映閱讀者結合解決語義不清狀況需要用的信息。以下是各 項眼動指標的定義:

> First fixation duration (以下均以 FFD 替代) 即受試 者眼睛首次凝視在目標區域上的時間。

> Single fixation duration (以下均以 SFD 替代) 即受試 者眼睛僅凝視在目標區域上一次, 該次的凝視時間 即為單次凝視時間。

> Gaze duration (以下均以 GD 替代) 即受試者眼睛凝 視在目標區域上,在未離開目標詞之前,所有凝視 時間的加總。

Go-past time (以下均以 GPT 替代) 即計算受試者眼 睛凝視到感興趣區域之時,一直到離開右邊邊界之 前的所有凝視時間加總。反映受試者需要將當下取 得的資訊與之前閱讀過的資訊做整合後才準備往下 閱讀的花費時間。

Regression-out rate (以下均以 ROR 替代)即受試者 在此區域上已有首次通過凝視,然後眼睛凝視接續 跳出目的地區域的左邊邊界繼續閱讀之可能性。反 映目前所儲存之資訊需與前面做整合。

Total viewing time (以下均以 TVT 替代) 即眼睛凝 視在目標區域上, 所有凝視時間的加總。

Rereading time (以下均以 RRT 替代) 即第一次閱讀 之後, 眼睛凝視在目標區域上, 所有凝視時間的加 總。

Rereading rate (以下均以 RRR 替代)受試者在此區域上已有首次通過凝視,然後再次凝視在此區域的可能性,無論其方向是由左而來或由右而來。

(摘自高佩如, 2001: 6-7)

除了記錄眼動訊息之外,研究者還錄了受試者的口語產出 (oral production),以便將兩種形式訊息進行匹配,探討理解與產 出兩者之間的關係。本研究所計算出來的眼動指標均以兩個漢字 長度的平均數,因為中文詞大部份是二字詞,能夠代表中文閱讀 過程的特性。

黄致潔共選擇了 18 名在臺灣翻譯所就讀學位的研究生為研究對象, 所有研究對象均為中文母語者, 並以英文為第二語言。 他們在一年級時已修讀過視譯課, 能說流利的中文和英文, 且掌握基礎視譯技能。所有受試者的視力正常或已改良。研究對象均已簽訂同意書, 並均獲得報酬。

測試材料為六段摘自實況中文演說稿的自然段,每個自然段約 150 字。材料一部份選自國立臺灣師範大學翻譯研究所視譯課程的教學材料,其他節選自 Toastmasters International 中文網會員擬定的模板演說致辭。為確保測試材料難度相對一致,研究者所選的材料均為一般聽眾能夠理解,不需要專門知識,並預期能讓所有受試者通順視譯出的內容。此外,爲了避免練習效應(practice effect),六段測試材料內容互不重疊。六段文字分為默讀、朗讀、視譯三組,每組兩段。每一題完成後螢幕會自動出現兩個判斷正誤題,以測試受試者是否捕捉到段落的主要內涵。

在獲得各眼動指標之後, 黃便以 ANOVA 統計方法對三種活 動的各項指標進行平均數檢定。其中在第一組資指標,即 FFD、 SFD 和 GD 的統計顯示,均達到顯著水準³ (p<.001),其中朗讀的 平均數最高(分別為 296.72、303.92、346.47 毫秒), 默讀和視 譯兩種活動則相近 (默讀分別為 221.07、218.61、236.33 毫秒: 視譯分別為 230.82、227.87、224.69 毫秒)。由於第一次閱讀 (first-pass reading) 反映的是閱讀理解中的字詞辨認,因此可以推 斷視譯在這個階段並不需要額外的氣力, 也說明沒有發生重組活 動。這樣就表示,此次測驗的結果支持序列式翻譯之說。至於朗 讀之所以在三個指標均比其他兩種顯著更長,是因為在朗讀的第 一次閱讀中, 受試者已經需要做口頭產出。

第二組指標 (GPT 和 ROR) 的結果則比第一組更加多元化。 三個活動之間的 GPT 平均數通過 ANOVA 檢定後得到高度顯著 性 (p<.001)。朗讀的 GPT 顯著高於默讀和視譯。其中默讀的 GPT 指標所使用的平均時間為 312.59 毫秒: 視譯則為 313.22。而朗讀 的 GPT 最高,為 414.79 毫秒。值得一提的是,由於 GPT 包涵 GD 指數,所以 GD 指標很高的朗讀活動的 GPT 會如此高也不足 為奇。然而在 ROR 指標中, 默讀及視譯的指數均高於朗讀, 其 中默讀的 ROR 為百分之 21.31: 朗讀為備份至 13.15: 而視譯則 為百分之 29.39。通過 ANOVA 檢定, 默讀的 ROR 比朗讀高

³ 研究者將默讀、朗讀和視譯的 FFD、SFD 和 GD 指標的平均數做了三 次 ANOVA 檢定,每個指標為一個自變相三層次 (1 independent variable, 3 levels).

(p<.05); 而視譯則也顯著高於朗讀 (p<.001)。 ROR 反映目前所儲存之資訊需與前面做整合。

第三組指標(RRT、RRR以及TVT)的結果顯示,視譯在第一次閱讀之後需要的時間遠比默讀多。其中默讀的 RRT 指標是240.45 毫秒;朗讀是354.64 毫秒;視譯是414.47 毫秒。TVT 指標上,默讀的平均時間為265.14 毫秒;朗讀為407.35 毫秒;視譯則為431.17 毫秒。通過ANOVA檢定發現,視譯的RRT與TVT均顯著高於默讀。這反映出兩者之差別。在初始的閱讀過程,默讀與視譯在理解階段是一致的,但在之後,視譯便比默讀更加需要處理時間,因為視譯需要進行重組與產出。這種結果支持序列式翻譯的說法。此外,由於視譯相對於其他兩種活動更加的複雜,因此其TVT指標也是最高的。至於RRR指標,默讀的RRR平均為百分之12.79;朗讀為百分之14.42;視譯則為百分之23.59。通過ANOVA檢定顯示,視譯的RRR明顯高於默讀(p<.05),這表示在進行視譯活動時,受試者經常回來凝視已看過的文字,也可以推斷在第一次閱讀之後,視譯比默讀需要更多的認知氣力。RRR的指標確認了RRT的結果。

	Silent reading	Reading aloud	Sight translation
First pass	Word recognition	Word recognition	Word recognition
		Production	
After first-pass	Further comprehension	Further comprehension	Further comprehension
		Production	Reformulation
			Production

表 2: 默讀、朗讀以及視譯在前後閱讀階段所產生之活 動 (摘自 Huang, 2011:75)

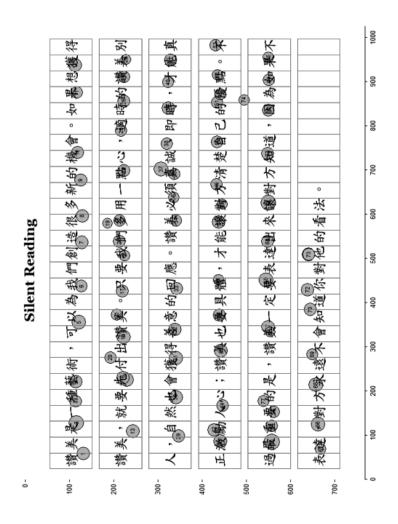
黄致潔此項研究的第三項研究目的是希望以實證資料來證實 提前閱讀的存在,提前閱讀的認證使用視譯產出的錄音,再將其 與眼動圖匹配。本研究的受試者共 18 位,每人做兩段視譯,共 得到 36 段錄音,但最後用來分析提前閱讀的錄音只剩 33 段,因 為兩段錄音聲效不佳, 另一段錄音則是因為受試者先看完所有的 文字,再開始進行視譯。

黄致潔以句子 N 和句子 N+1 之間的重疊性與否來證明這一 問題。之所以選擇句子為意義單位,是因為看在每個句子均以標 點符號為自然分解指標。研究這一環節重視的是受試者在進行某 一句子的產出時, 眼睛是否向前一句子凝視, 若有就表示提前閱 讀在視譯確實存在。結果發現三種情形,百分之 72.80 為提前閱 讀(即理解與口語產出發生重疊): 百分之 26.60 為沒有口語產 出(即停頓),換句話說,受試者在凝視 N+1 句子時並不在翻譯 N 句子的内容: 其餘百分之 0.60 為受試者的口語產出早於眼睛凝 視。之所以能發生提前產出的情況,研究者推論,是因為該受試 者具備揣測試題下文的能力。

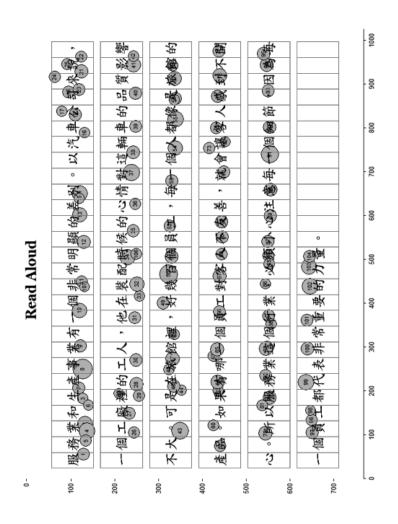
本研究的最終結論均達成了論文的三個研究目的。既初步揭示了視譯作為認知活動的實質性,又提出視譯是一種序列行翻譯的看法。此外也證明提前閱讀在視譯活動中的重要存在。

黄致潔這項研究可謂是全臺以眼動指標研究視譯活動的開端,在她之後,2013年師大翻譯所碩士生陳德怡參照了黃的研究方法,將研究對象從口譯學生換成具有一定經驗的專業口譯員,在獲得眼動指標之後,對兩組生熟手口譯員加以對比分析,提出新的看法,讓學術界更進一步靠近視譯背後的秘密。

陳德怡的《熟手與生手口譯員理解過程差異之眼動研究》


陳德怡 2013 年的研究是以黃致潔碩士論文中所得的 18 位生手口譯員(即口譯學生)在視譯過程中的眼動指標和口語產出,作為 A 組樣本,再讓 18 位熟手口譯員在進行完全一致的測驗。然後將所得到的資料(可視為 B 組樣本)與 A 組樣本的眼動指標進行對比分析,以便探討兩組口譯員在理解階段中之異同,以及了解熟手口譯員的視譯質量是否真的比生手口譯員好,如果是,其背後原因為何,這樣得出的結論可能對以後視譯訓練起到幫助。

陳按照國際會議口譯協會 (AIIC) 的標準來劃分熟手與生手之間的差別,即以至少從事過 150 工作日口譯為門檻,選擇了 18 位熟手口譯員來做視譯測驗, 18 位當中有 13 位女性、5 位男


性, 年齡在 29 至 58 歲之間, 所有口譯員目前仍在工作, 工作時 間在2至21年之間,平均工作年數為7.6年。受試者均以中文為 母語、英文為工作語言,通過同事介紹參加此研究。與黃的研究 一樣,受試者均簽訂同意書,但陳並沒有指出他們是否獲得報 酬。

跟黄的研究一樣, 受試者需要坐在電腦螢幕前, 將眼睛靠在 考架上進行默讀、朗讀和視譯三種活動。測驗的材料與黃的研究 完全一致, 即共有六段文字, 分為默讀、朗讀、視譯三組, 每組 兩段。每一段完成後螢幕會自動出現兩個判斷正誤題,以測試受 試者是否捕捉到段落的主要內涵。 眼動指標方面, 陳的研究去掉 黄研究中的一些指標,剩下五種指標,包括:FFD、SFD、GD、 RRT 以及 TVT (各指標定義請參照論文第 4 頁)。研究目的是爲 了了解孰手口譯員在視譯理解階段的過程, 通過兩組眼動指標的 對比分析,證實熟手翻譯員是否在眼動上比生手口譯員花費更少 的時間,即更有效率。此外還旨在探討熟手口譯員在進行視譯活 動時是否採用與生手不一樣的策略。統計方面,陳德怡所採用的 統計方法與黃致潔相似,即採用了 ANOVA 以及 t 檢定。

以下為論文中所提供的眼動圖:

วารสารจีนวิทยา ◆ ปีที่ 7 สิงหาคม 2556

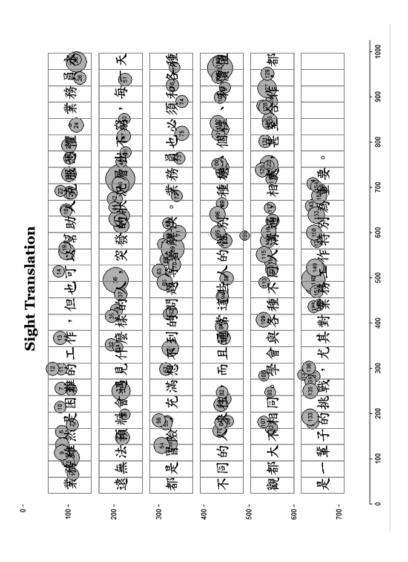


圖 1-3: 熟手口譯員眼動模式圖 (摘自 Chen, 2013: 57-58)

值得一提的是, 黄的研究並未提供類似的眼動模式圖。筆者 認為,這是陳碩論的優點之一。因為眼動模式圖對於讀者理解起 到了不可小覷的作用。從以上三張圖可以看出,默讀的凝視分配 最均勻,其次是朗讀,而需要最多認知氣力的視譯,則顯示出比 其他兩種要複雜的凝視點。

上述三圖中的淺藍色圓圈代表凝視點, 圓圈的大小代表凝視 的時間長短, 圓圈內的數字則是凝視的順序。通過 ANOVA 檢 定,熟手口譯員進行默讀、朗讀和視譯所得的五種眼動指標平均 數均達到顯著性(p=.000)。其中第一次閱讀指標(即 FFD、 SFD 以及 GD) 中, 默讀的 FFD 平均數為 221.5 毫秒; 朗讀為 220.7 毫秒: 視譯為 242.4 毫秒。SFD 平均數方面, 默讀為 220.7 毫秒; 朗讀為 274.2 毫秒; 視譯為 239.3 毫秒。至於 GD 平均數, 默讀為 232.3 毫秒: 朗讀為 328.2 毫秒: 視譯為 261.4 毫秒。由於 GD 是第一次閱讀所有凝視時間的總和, 因此在第一次閱讀階 段, 默讀使用的時間最短, 其次是視譯, 而使用時間最長的是朗 讀。朗讀在第一次凝視時之所以使用時間最長,是因為它在此階 段除了理解之外, 也需要做口語產出, 即將所看到的文字朗讀出 來。

至於代表第一次閱讀之後對訊息的進一步處理的 RRT 指 標,結果顯示,默讀所用的 RRT 平均最少,為 240 7 毫秒,其次 是朗讀,為 335 毫秒:而使用最多時間在再閱讀 (rereading)上的 活動則是視譯,為 448.5 毫秒。此結果反映出視譯在第一次閱讀 之後,受試者需要更多的時間重組與處理訊息。

TVT 指標方面,仍然是默讀使用的平均時間最少,為 260.4 毫秒; 其次是朗讀,為 398.2 毫秒; 最後則是視譯,為 465.4 毫秒。默讀只包含一個處理階段: 理解階段; 朗讀包含兩個階段,即理解和產出; 視譯包含三個階段——理解、重組和產出,因此視譯理所當然需要更多的處理時間。

由於熟手口譯員在進行視譯時,其第一次閱讀指標,包括 FFD、SFD以及GD的平均數均高於默讀,研究者因此推論,熟 手口譯員在第一次閱讀時已經投入了額外的氣力。在那之後,視 譯的再閱讀時間還是比默讀和朗讀長。如果將視譯的第一次閱讀 的眼動指標與朗讀相比,就會看到在第一次閱讀時,視譯所用的 時間不如朗讀長,但到了第一次閱讀之後,視譯所需要的再閱讀 時間就比朗讀長得多。

陳德怡在將熟手口譯員的眼動指標與黃致潔研究中生手口譯 員的眼動指標進行對比後,得出的結果是: 熟手和生手在五種指 標中表現相近。然而,熟手口譯員在絕大多數指標的標準差,除 了默讀的 FFD、SFD 和 GD 之外,均比生手高。這意味著熟手口 譯員之間表現的差異比生手大。當然,高標準差也意味著樣本或 許存在極端值,故有可能掩蓋某種現象。

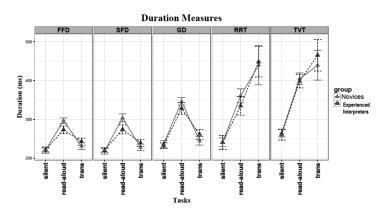


圖 4: 生手與熟手口譯員默讀、朗讀和視譯之眼動指標對比 (摘自 Chen, 2013: 64)

此外,在比較生手與熟手的默讀、朗讀和視譯的五種眼動指 標後,結果顯示兩組受試者僅在朗讀的 FFD 和 SFD 值有顯著差 里,其他都沒有顯著性。這表示生手與孰手口譯員在所有三個活 動的凝視時間相對一致。

至於生手與熟手口譯員在進行視譯時的 RRT 指標,兩組都 表現得比較相近。然而值得注意的是,熟手口譯員在第一次閱讀 中所使用的時間(即其 FFD 和 GD 指標)已經比在默讀的時候要 長。但是生手口譯員的 FFD 和 GD 指標在默讀和視譯兩種活動中 沒有顯著性差異。這表示生手的"重組"階段要等到"理解"結 束後才發生,所謂"序列式翻譯",而熟手則是在第一次閱讀已 經開始投入某種力氣在上面(研究者認為該力氣就是"重組"活

動)。如果將所有的時間加總起來,熟手有可能比生手使用更多 的時間。

那麼,這是否代表熟手口譯員的能力不如生手,或熟手的效率不如生手?研究者的答案是否定的。

在做完眼動指標分析之後,陳德怡進一步評價熟手與生手的 視譯口語產出。其中以流利度 (fluency) 和準確度 (accuracy) 為評 價的標準。

流利度的評審為五位英語母語者(年龄 26—54 歲),兩位 為女性,三位為男性,均為在臺灣的研究生,且英中口語流利。 研究者並未通知他們要評價的錄音是視譯的口語產出,僅告訴他 們是外國人說英語的錄音。之所以如此,是爲了效仿視譯的真實 情況:一般聽眾在聽同步口譯時,就不應該覺得口譯員正在"閱 讀"文字。

評價的成績最低為一分,最高為五分。主要評價口語產出的 總體可了解性及連貫性、遲疑的次數、重複的次數、自我修正的 次數、用詞多餘以及詞語和語法偏誤。評分標準參照了臺灣教育 部舉辦的中英文翻譯能力檢定考試的標準。

至於準確度的評價,則由研究者一人完成。與受試者相同,陳的母語為中文,以英語為工作語言,兩種語言均很流利。

準確性的成績以口語產出對原文的忠實性、是否出現造成意思扭曲之省略或添加的現象、誤解或誤譯。同樣,這些評分標準是以臺灣教育部中英文翻譯能力檢定考試的標準為依據。

結果顯示, 熟手口譯員在流利度和準確度的平均得分均高於 生手口譯員, 诵過 ANOVA 檢定之後也得到顯著性差異。其中熟 手口譯員的成績的流利度為 4.13 分, 生手口譯員的分數則是 3.46 分。在準確度方面,兩組的得分比較接近,熟手為 4.46 分,生手 為 4.13 分。說明熟手口譯員在視譯質量上比生手佳。眼動指標表 明,熟手口譯員的第一次閱讀指標 (FFD、SFD 和 GD) 在視譯 活動比默讀活動要長,但生手口譯員的相同指標卻沒有顯著差 別。此外,RRT 指標方面,生手和熟手所用的時間也相近。熟手 所用的 TVT 指標因此也比生手高,但那也顯示在其質量更佳的 口語產出上。

除了產出質量更高以外,從兩組口譯員的眼動模式圖也可以 看得出來,熟手口譯員在進行視譯活動時,相對於生手口譯員來 說, 更加有信心。這表現在淺藍色圓圈的大小和排列都比生手均 匀,回望率也相對較少(參看圖5-6)。

圖 5: 熟手口譯員視譯活動之眼動模式 (摘自 Chen, 2013:88)

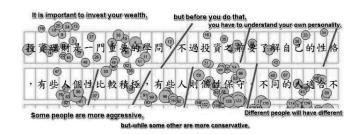


圖 6: 生手口譯員視譯活動之眼動模式 (摘自 Chen, 2013:89)

黄致潔在其實驗中指出,參與其研究的口譯學生所使用的方法是序列式翻譯,即先理解原文在說什麼(反應在視譯與默讀相對一致的第一次閱讀指標上),然後再進行重組與產出。但陳德怡的受試者則相反,他們在第一次閱讀就已經在處理(或曰"重

組")訊息。因此,熟手口譯員在進行視譯時,所採用的策略應 該是"平行式"的翻譯。

除此之外,通過兩組口譯員眼動指標的對比分析,研究者提 出將"重組"階段再分為兩個層次——"基礎層次"和"精煉層 次"。熟手口譯員在第一次閱讀階段所使用的凝視時間比生手 長,此外在再閱讀階段他們仍然使用與生毛相等的時間。陳德怡 認為, 熟手的這種現象相當於已到了視譯產出的精煉層次, 而生 手口譯員則仍屬於基礎階段。

總而言之, 研究者在進行樣本收集和對比分析之後, 已達到 了其研究目的。並提出"基礎層次"與"精煉層次"之新概念。

結論

國立臺灣師範大學翻譯研究所碩十論文《視譯閱讀理解歷程 之眼動研究》及《熟手與生手口譯員視譯理解過程差異之眼動研 究》是臺灣以神經科學的方法應用在視譯研究上的拓荒之作,其 重要性不言而喻。兩篇論文以量性研究的形式對視譯這一直被人 忽略的口譯類型進行了科學探討,初步揭開視譯的理解 (comprehension) 階段的神秘面紗。

兩項研究所使用的研究方法和統計方法的效度與信度可謂令 人滿意,同時也提出了視譯教學值得借鑑的建議,即口譯訓練應 著重改寫 (paraphrasing) 和組塊分析 (information chunking) 技術的 提高。

當然,兩項研究也不無應努力提高之處。比如受試者的人數,若能夠達到 30 人大樣本的門檻,最终得出的結論也自然會更具代表性。此外,若能夠做到與其他相關領域的專家展開合作研究。比如在視譯研究方面,可考慮與神經科學、眼動技術專家一同合作,以便起到專業知識與資料的互補作用,在論述時也會更具說服力。翻譯學本身就是一門跨越多種領域,仍存在很大發展空間的年輕學科,獲得其他學門的支持,對其未來只會有利而無弊。

參考文獻:

- Agrifoglio, M. (2004). Sight translation and interpreting: A comparative analysis of costraints and failures. *Interpreting*, 6, 43-67.
- Chen, D.-I.(2013). Differences in comprehension process between experienced and novice interpreters an eye movement study. (Unpublished master thesis). Graduate Institute of Translation and Interpretation. National Taiwan Normal University. Taipei.
- Fabbro, F., Gran, L. (1994). Neurological and neuropsychological aspects of polyglossia and simultaneous interpretation. In
 S. Lambert & B. Moser-Mocer (Eds.), *Bridging the gap: Empirical research in simultaneous interpretation*, 273 317.
- Gile, D. (1995). Basic concepts and models for interpreter and translator training. Amsterdam: John Benjamins.

- Huang, C.-C. (2011). Tracking eye movements in sight translation: the comprehension process in interpreting. (Unpublished master thesis). Graduate Institute of Translation and Interpretation. National Taiwan Normal University. Taipei.
- Su, Y.-W. (2013). Cognitive process during pauses in interpreting output: from eye movements in sight translation. (Unpublished master thesis). Graduate Institute of Translation and Interpretation. National Taiwan Normal University. Taipei.
- 高佩如(2011)。語境預測力對中文一詞多義處理歷程的影響: 文句閱讀的眼動研究。未出版碩士論文, 國立政治大學, 臺北市。
- 賴則中(2010)。從文本難度與特色看視譯之困難。未出版碩士 論文, 國立臺灣師範大學, 臺北市。
- 楊承淑(2000)。《口譯教學研究——理論與實踐》,臺北縣 新莊市,輔仁大學出版社。

ABSTRACT

Sight Translation Research Utilizing Eye Movement Tracking in Taiwan: a Literature Review Pratuangporn Wiratpokee

Sight translation is an activity where an interpreter produces oral output while reading from a source text (Lai, 2010). It is regarded as a type of oral translation, which is mainly used in courts or academic conferences and also as a warm-up exercise prior to simultaneous interpreting training (Agrifoglio, 2004).

Compared to other types of interpretation, the cognitive effort needed in sight translation is less complicated. Also, since the source text input is in written form, eye-tracking techniques can be used to identify the cognitive processes that occur while an interpreter is performing the activity. The results may lead us one step closer to the understanding of the mysterious "black box" inside the brain of an interpreter.

This paper aims to review Taiwan's past research on sight translation aided by the help of eye-tracking technology. Two closely related studies are selected: one entitled "Tracking eye movements in sight translation - the

comprehension process in interpreting" by Huang, C.-C. (2011) and the other "Differences in comprehension process between experienced and novice interpreters – an eye movement study" by Chen D.-I. (2013). This paper focuses on the aims, research methodologies and statistical methods of the above studies, as well as their contribution to translation and interpretation studies as a whole.

Keywords: sight translation, eye-tracking, quantitative research. literature review